Search results for "chord-arc property"
showing 1 items of 1 documents
Weak chord-arc curves and double-dome quasisymmetric spheres
2014
Let $\Omega$ be a planar Jordan domain and $\alpha>0$. We consider double-dome-like surfaces $\Sigma(\Omega,t^{\alpha})$ over $\overline{\Omega}$ where the height of the surface over any point $x\in\overline{\Omega}$ equals $\text{dist}(x,\partial\Omega)^{\alpha}$. We identify the necessary and sufficient conditions in terms of $\Omega$ and $\alpha$ so that these surfaces are quasisymmetric to $\mathbb{S}^2$ and we show that $\Sigma(\Omega,t^{\alpha})$ is quasisymmetric to the unit sphere $\mathbb{S}^2$ if and only if it is linearly locally connected and Ahlfors $2$-regular.